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From (36), (38) and (41), we get 

K 0 =  3(1 + 4a)/4(1 + a )  2, 

K 1 = - - 3 ( 1  + 2a2)/4(1 + a )  2, 

K 2 =  3(1 -- 2a)(1 -- 2a2)/4(1 +tx) 2. (42) 

Following Gevers (1954) and Holloway (1969a), the 
diffracted intensity for the diffuse reflexions is given by 

Ia(h3) = K o + Aj cos (Trjh 3 Bj cos (7rjh 3 , 
J=0 = 

(43) 
where 

. 4 o =  

, 4 1 =  

, 4 2 =  

, 4 3 =  

B 0 = 

n l =  

n 2 = 

b2 KI + b l ( K  2 + b 2 K1) -- b 2 K0, 

(1 + bl)K 1 + (b 2 + b o ) ( g  2 + b 2 K l ) -  blboKo, 

b0 KI + K 2 + b 2 K1 -- b 2 b0 K0, 

--boK o, 
1 + b2 2 + bl 2 + b 2, (44) 

2(b2 + b2 bl + bl bo), 

2(bl + b2 bo), 

B a = 2b o. 
Substituting from (40), (42) and (44) in (43), we have 
after simplification 

Ia(h 3 ) = { 3 a ( 1 - a ) [ 2 - 3 a + 2 a  2+ (1 + a - 2 a  2) 

x cos zch 3 + 2acos  2 7rh3]}/{2(1 + a) 

× [1 + a 2 -4- 2a cos 7oh 3 ] 

x [ ( 1 - - a )  2 + ( 1 - - a  2) 

× COS 7ch 3 + 2a COS 2 7th 3 ] }, (45) 

which is identical with the expression obtained by Lele, 
Anantharaman & Johnson (1967) and Holloway 

(1969b). It may be noted that except for the root with 
unit modulus and the corresponding integrated inten- 
sity, which could be obtained very simply, no other root 
or integrated-intensity values were necessary for the 
calculations. 

The author is grateful to Professor T. R. 
Anantharaman for encouragement and interest and to 
Professor S. L. Malhotra for the provision of labora- 
tory facilities. Thanks are due to Dr Dhananjai  Pandey 
for helpful discussions. 
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Abstract 

In a fragile packing of spheres, t h e  density of the 
packed spheres is minimized. There are exactly nine 
distinct indecomposable fragile lattice packings in 
four-dimensional space; they are described in terms of 
their associated quadratic forms. 

The three-dimensional fragile lattice packings of 
spheres were determined by Fields (1980). There are 
only the simple cubic, simple hexagonal, body-centered 
cubic and body-centered tetragonal packings. Of  these 
lattices, only the latter two are indecomposable" the 
simple cubic is the orthogonal sum of three one- 
dimensional lattices, and the simple hexagonal lattice is 
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the orthogonal sum of a one-dimensional lattice and the 
two-dimensional stable lattice. In general, it is clear that 
any decomposable fragile lattice is the orthogonal sum 
of perfect and fragile lattices of lower dimension (cf. 
Fields, 1979). Our purpose here, therefore, is to 
determine the indecomposable fragile lattices in R4: we 
determine that there are exactly nine. Our method for 
finding them is based on the one used in the 
classification in R 3. It depends on the following results 
about positive-definite quadratic forms: 

(1) a form is fragile if and only if it is weakly eutactic 
and not perfect (Fields, 1979; cf. Lekkerkerker, 1969); 

(2) any four linearly independent minimum vectors 
of a positive-definite quadratic form in four variables 
must generate the entire integer lattice, with one 
exception which occurs among the minimum vectors of 
one of the two perfect forms (Korkine & Zolotareff, 
1877; cf. van der Waerden, 1956); 

(3) a fragile form in n (=4) variables has n (=4) 
linearly independent minimum vectors (Fields, 1980); 

(4) there is at most one fragile form possessing a 
given complete set of minimum vectors (Fields, 1979). 

To find the fragile forms in four variables, therefore, 
it suffices to find those forms which are weakly eutactic 
with respect to their set S of minimum vectors, i.e. 
which satisfy 

A - l =  ~ pmmt m, 
m C S  

where A is the matrix of our quadratic form, the 
minimum vectors m are represented as row matrices, 
and the Pm are some real numbers. Results (2) and (3) 
allow us to restrict our attention to sets of minimum 
vectors whose entries are either 0 or + 1; there are 40 
pairs of such non-zero vectors and their negatives. 
Results (2) and (3) also allow us to assume that the four 
unit vectors are among the minimum vectors of our 
fragile form, since we are interested in classifying these 
forms up to integral equivalence only. 

Once the fragile forms have been found, sets of 
vectors which form bases of the fragile lattices can be 
determined via the classical method of finding the 
'principal axes' of these forms (cf. Courant  & Hilbert, 
1937, pp. 23ff.). We give here the Bravais  type of each 
lattice, corresponding to the general classification of 
four-dimensional lattices as given by Wondratschek, 
Bulow & Neubuser (1971) and Brown, Bulow, 
Neubuser, Wondratschek & Zassenhaus (1978). We 
also list for each lattice 

(a) the order of its point group, 
(b) the coordination number (CN), 
(c) the sizes of the orbits of the point group acting on 

the set of nearest neighbors. 
Determining the particular Bravais types was accom- 

plished by computing the point group of each fragile 
lattice; recall that this group is isomorphic with the 

group of (4 x 4) matrices A with integral entries which 
satisfy 

A t B A  = B, 

where B is the corresponding fragile form. Determining 
the Bravais type was then easy whenever there was only 
one indecomposable Bravais lattice in the crystal 
system which the point group determined. In two of the 
crystal systems where there were more than one 
indecomposable Bravais lattice (system 25 for form III, 
and system 6 for forms V and VI), it became necessary 
to compute the orbits of minimum vectors and common 
eigenvectors to distinguish between the possible Bravais 
types. 

Each fragile form listed below is integrally equivalent 
to a form of the same Bravais type as listed in Table 2C 
of Brown, Bulow, Neubuser, Wondratschek & Zas- 
senhaus (1978). Once this identification is made, a 
primitive basis can be found via the centering matrix 
provided by Brown et al. (1978, Table 4C). However, 
since there is no direct procedure, short of a computer 
search, for finding the particular values of the 
parameters of the forms of Brown et al. (1978, Table 
2C) which correspond to the forms on our list, we do 
not consider here the problem of finding primitive bases 
for the fragile lattices. 

While the computation needed for the classification 
in  R 3 could be done by hand in a few hours, machine 
computation is absolutely essential in the four-dimen- 
sional case. More precisely, we programmed our 
computer to find indecomposable symmetric positive- 
definite matrices 

1 a b c  

l d e  
A =  

i f  
1 

which satisfy the k linear equations 

Alma] . . . .  = A i m  k] = 1 

and the ten non-linear equations 

A-I  = Pl e~ e I + . . .  + P4 et e4 

+ ql m~ m 1 + .. .  + qk mtk ink, 

where Pi, qj E R ,  e l , . . . ,  e 4 are the four unit vectors, and 
ml, . . . ,  m k is an arbitrary subset of integral vectors 
whose entries are either 0 or +1. There are 10 + k 
unknowns: a . . . . .  f ,  Pl, • • ",P4, qx . . . .  , qk" The number k 
can be either 1, 2, 3, 4 or 5, depending on whether our 
lattice is to have 5, 4, 3, 2, or 1 degree of freedom [the 
only fragile lattice with six degrees of freedom (cor- 
responding to the case k = 0) is the integer lattice, 
which is decomposable]. 

By reduction theory (cf. Lekkerkerker, 1969), any 
positive-definite solution A is integrally equivalent to a 
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solution whose coefficients satisfy 

0 < a < d < f < ½, -½ < b,c,e <_ ~, 

so we may impose these additional constraints without 
loss of generality. 

It was necessary to verify that for each set of vectors 
m l , . . . ,  mr, for which our program yielded no solution, 
there was in fact no solution possible. It was also 
necessary to weed out those solutions which were 
perfect (one of the two perfect forms appeared as a 
solution), and those solutions for which the vectors el, 
. . . .  e4, m s . . . . .  m k were not minimum vectors. There 
were three such 'extraneous solutions' (listed below), for 
which these vectors turned out to be secondary minima. 
Finally, we had to determine which of our solutions 
were integrally equivalent. 

In addition to the fragile forms themselves, we also 
list for each form 

(d) its determinant (det), III. 
(e) the minimum vectors m~ . . . . .  m k, 

( f )  the values of the constants pl  . . . .  , P4, q~ . . . . .  qk. 
The density of the corresponding lattice packing of 
spheres is given by density --- zrz/32v/det. The numbers 
(a) (b) (d) and the sets of numbers (c) and ( f )  are 
invariant under integral transformations of the form 
(orthogonal transformations of the lattice). We would 
also like to point out the following: IV. 

(i) Two fragile forms, I and IX, are absolutely 
symmetric (cf. Fields, 1979). Form I is the analogue of 
the body-centered cubic form; it has 240 integral 
automorphs and is dual to (a scalar multiple of) the 
icosahedral stable form ( S N  centered). It also deter- 
mines the least-dense indecomposable fragile lattice 
packing in R 4. The di-isohexagonal othogonal form IX 
has 144 automorphs and is self dual (up to a scalar 
multiple). It determines the densest fragile lattice V. 
packing in R 4. The two absolutely symmetric forms are 
the only indecomposable fragile forms which are 
strongly eutactic (i.e. for which p~ . . . .  = P4 = q~ . . . .  
= qk). Both of the two stable lattice packings in R 4 are 
denser than the densest fragile lattice packing. 

(ii) Each fragile form in four variables has an 
automorphism group of order at least 16; i.e. each 
fragile lattice in R 4 has a point group of order at least 
16. 

(iii) All but one of the fragile forms are eutactie (i.e. 
each Pi and qj is strictly positive). The one exception is VI. 
form III. Both it and form IV have the same number of 
minimum vectors and the same determinant, so that the 
packings they determine are equally dense, and the 
spheres in each packing have the same number of 
nearest neighbors; packing III exhibits much greater 
symmetry, however. 

(iv) Two fragile forms, V and VII, have incom- 
mensurable coefficients. Their appearance came as a 
great surprise. 

T h e  i n d e e o m p o s a b l e  f o u r - d i m e n s i o n a l  fragile forms 
a n d  l a t t i c e s  

I. Icosahedral 
1 I Bravais type XXII / I  1 k 4 4 

Order = 240 1 1 
C N = 1 0  1 4 4 

1 1 orbit of 10 vectors 1 
det = 53/28= 0.4883 
m 1 = ( 1 , - 1 , 1 , - 1 )  1 

P l  = P 2  = P 3  = P 4  = q l  = 4/5 

II. Hexagonal  orthogonal 
1 1 Bravais type XI/II  1 61- 6 6 

Order = 24 1 1 1 
CN = 12 ~--~ 
3 orbits: 6 /4 /2  1 
det = 22/32= 0.4444 1 
m~ = ( 0 , 1 , - - 1 , 1 ) ,  m 2 = ( 1 , - - 1 , 1 , - - 1 )  

Pl = 2/3, p2 =P3 =P4 = 3/4, ql = 5/12, q2 = 2/3 

Cubic orthogonal 
Bravais type XVII/VI 1 ¼ ¼ ½ 
O r d e r = 9 6  1 ¼ 1 
CN = 14 
2 orbits: 12/2 1 ½ 
det = 33/26= 0.421875 1 
m~ = ( 0 , 0 , 1 , - - 1 ) ,  m 2 = ( 0 , 1 , 0 , - - 1 ) ,  m 3 = ( 1 , 0 , 0 , - - 1 )  

P l  = P 2  = P 3  --'= 2/3, Pa = 0, ql = q 2  = q 3  = 2/3 

Tetragonal orthogonal 
Bravais type X/I  1 ¼ --~ --~ 
O r d e r = 1 6  1 ½ ¼ 
CN = 14 
3 orbits: 8/4/2 1 
det = 33/26= 0.421875 1 
m I = ( 0 , 0 , 1 , - -  1) ,  m 2 = ( 0 , 1 , - - 1 , 0 ) ,  m 3 = ( 1 , - -  1 , 1 , 0 )  

Pl =PE =P4  = 2/3,P3 = 1/3, ql = q3 = 2/3, q2 = 1/3 

Orthogonal 
Bravais type V/VIII 1 a (2a - 1) a 
Order = 16 1 a ½ 
C N =  14 
3 orbits" 8/4/2 1 a 
det = (35 + 13V/13)/216 = 0.3790 1 

[a = (7- -  V/13)/12] 

m I = ( 0 , 1 , 0 , - - 1 ) ,  m z = ( 1 , 0 , 1 , - - 1 ) ,  m 3 = ( 1 , - - 1 , 1 , 0 )  

Pl =P4  = 3(1 -- pz)/2,  pz = p3 = qz = q3 

= (33 + 3V/13)/(35 + 13V/13), ql = 1 - P2 

Orthogonal 
Bravais type V/VIII 1 ¼ 0 ¼ 
O r d e r =  16 1 ½0 
CN = 16 
4 orbits: 8 /4 /2 /2  1 ½ 
det = 3/23 = 0.375 1 
m I = ( 0 , 0 , 1 , - - 1 ) ,  m 2 = ( 0 , 1 , - -  1 , 0 ) ,  m 3 = ( 0 , 1 , - - 1 , 1 ) ,  

m 4 = ( 1 , - -  1 , 1 , - - 1 )  

Pl = 2/3,P2 =P3 =P4  = 1/2, ql = q2 = 1/2, 
q3 = 1/6, q4 = 2/3 
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VII. Tetragonal orthogonal 
Bravais type X / I  1 ½ b ½ 

Order  = 16 1 ½b 
C N =  16 
2 orbits: 8/8 1 ½ 
det = (6V/3 - 9)/4 = 0-3481 1 

[b = (X/~- -  1)/2] 

m~ = (0 ,0 ,1 , - -1 ) ,  m 2 = (0 ,1 , - -1 ,0) ,  m 3 = (1 ,0 ,0 , - -1) ,  
m 4 = ( 1 ,-- 1,0,0) 

p , = p 2 = P 3 = p 4 = ( 3 V / 3  - 5)/(2V/3 -- 3), 

VIII .  

ql = q2 = q3 = q4 -= 1 - - P l  

Hexagonal orthogonal 

Bravais type X I / I I  
Order---  24 
C N =  18 
2 orbits: 12/6 
det = 1/3 = 0 .3333  

1½½  
1½0 

1½ 
1 

m~ = (0 ,0 ,1 , - -1 ) ,  m 2 = (0 ,1 , - -1 ,0 ) ,  m 3 =  (0 ,1 , - -1 ,1 ) ,  
m 4 = ( 1,0,-- 1,0), m 5 = ( 1,-- 1,0,0) 

Pi = P 4  = 1/2,P2 = P 3  = 1/3, 
ql = q3 = q4 = q5 = 1/2, q2 = 1/3 

IX.  Di-isohexagonal orthogonal 

Bravais type X X I / I  1 1 1 
Order  = 144 1 ¼ --~ 
C N  = 18 1 
1 orbit: 18 1 
det = 34 /28=  0-3164 1 
m I = (0 ,1 ,0 ,1) ,  m 2 = (0 ,1 , - -1 ,1) ,  m 3 = (1 ,0 ,0 ,1) ,  

m 4 = ( 1,0,1,0),  m 5 ---- ( 1,-- 1,1,0) 

Pl = P2 = P3 = P4 ---= ql = q2 = q3 = q4 = q5 = 4 /9  

the sets S contain certain secondary minima of  these 
forms. The three forms are: 

(a) 1 ] ½  ] (b) 1 ½ 1 ~  (c) l a b - ½  

r~ ] - -½ ;  1 ½---~ ; 1 ½ e ,  

1 ] 1 ½ 1 ½ 

1 1 1 

a = l  + b + e = 0 . 3 8 9 2  
e = (2b 2 + 7b + 2)/(6b + 3) = - 0 . 2 5 7 1  
b = x +~,  where 2x 3 _ 12x - 9 = 0 

= 2V'2  cos [k(cos -1 9/8X/~) + 240 ° ] + ½ 
= - 0 - 3 5 3 7 .  

The corresponding 'ext raneous  solution' in three dimen- 
sions is the / -cen te red  te t ragonal  form 

1 

which has four minima ( C N  = 4) and twelve secondary  
minima (cf. Fields, 1980, Lemma 3, Case  IV). 

We wish to thank the referees of  both this paper  and 
of  Fields (1980) for (a) directing us to the relevant 
crystal lographic  literature, and (b) correcting our 
identification of  one of  the three-dimensional fragile 
forms.  We also wish to thank Professor  J. R. Bunch of  
the Universi ty of  California,  San Diego,  for some 
technical assistance. 

Final  remarks  

There were three other ' ex t raneous '  positive-definite 
quadra t ic  forms which were found by our algorithm. 
They  have the following properties:  

(1) some subset S of  integral solutions m of the 
equat ion Aim] = 1 contains four vectors which 
generate  the entire integer lattice Z4; 

(2) A is not perfect with respect to S: there exists a 
form B 4= A such that  A [m] = B[m] for all m E S;  

(3) A is weakly eutactic with respect to S :  

A - I  = ~ Pm mt m for somePm E R. 
mES 

Each  of  these forms has two pairs of  minimum vectors;  
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